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INTRODUCT ION

Much progress has  been made in recent years in the development of a theoretical framework

for the formulation of variational principles [Sewell , 1969; Noble and Sewell , 1972; Sewell , 1973a ,

b; Herrera , 1974; Herrera and Bielak , 1976; Sewell and Noble 1976]. A contribution due to Sewell

[197 3, a) allows one to generate dual var iat ional  principles from a single functional and to uni fy  the

theory . Herrera [1974], and Herrera and Biel ak [1976], developed a fo rmulation of variat ional  prin-

• ciples using funct ional-valued operators which s impl i f ies  the treatment of partial d i f ferent ia l

• equations because it is applicable in any l inear space , not necessarily normed , or with an inner

product , or complete. The si tuation has been summarized by Herrer a and Bielak [1976].

A suff ic ient  condition for an operator equation to admit  a var ia t ional  formulation is that  the

operator be potential , and this will  be so if and only if its derivative is a symmetric bi l inear func-

tional. Variational and extremum principles are interre la ted because a necessary condition for the

existence of a stat ionary extremum is the vanishing of the variat ion.  A suff icient  condition for a

variational principle to he oxtremum is that the generat ing funct ional  be either convex or concave.

• In general , a func t iona l  is neither convex nor concave; however , if the l inear  space in which the

functional is defined can be decomposed into two subspaces , one in which the functional  is convex

and another in which it is concave, the func t ion a l  is saddle , so that  Noble and Sewell s result s

can be applied ; then the var ia t ional  principle becomes a pair of dual principles.  Such a decompo-

sition can be expected to exist under  very general condi t ions , at least  locally , because th i s  is the

case for surfaces  in f in i t e  d imensional  spaces.

1
For l inear  operators the  theory becomes espec ia l ly  simple. A suf f ic ien t  condit ion for a l inear

equation to admi t  a v a r i a t i o n a l  fo rmu la t ion  is th at  the operator be sym metric.  If the operator is
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either positive or negative , then the associated functional is either convex or concave , and

consequently the variat ion al  principle is an extremum one. In general a sy mmetr ic  l inear

operator is neither positive nor negative , but under very general  condit ions (e. g. when

spectral theorem s are applicable) , the linear space D in which the operator is defined can

• be decomposed into two subspaces , one D
+ 

In wh ich the operator is non -ne ga t ive  and

another D in which it Is non-posi t ive;  then the associated func t iona l  is saddle and the

variational principle generates dual extremum principles  of Sewell s type. Accordingly, it

Is possible to associate dual extremum principles to arbi trary equations formulated in te rms

of linear symmetric operators.

The main  advantages of using functional-valued operators are (Herrera and Bielak ,

1976]:

- 

I) Problem s are formulated in the most general kind of linear spaces , which are not

• necessarily normed , or with an inner product , or com plete. Most work in this field has

• 
• been done In either Inner product spaces [Noble and Sewell , 1972 ; Sewell , 1969 , 197 3a , b;

Sewell and Noble , 1976] or in Hu bert spaces fArt hurs , 1970; Rob inson , 1971; Collins , 1976 ;

Brezis and Ekeland , 1976] and it is generally thought that  this is desirable , if not essential ,

• for the results  to hold. In many applications the introduction of the Hu bert space structure

leads to unwarranted complications. This is not required when funct ional-valued operators
r .

are used.

ii) The introduction of superfluous hypotheses in the development of a theory is always

• 
. Inconvenient , because frequently they needlessly restrict Its applicability.

li i)  The symmetry condition for the po ten t ia lness  of an operator can be extended to

• linear spaces for which no Inner product or norm have to be defined [Herrera , 1974] . This fac t

makes It possible to formulate  a theory which is rigorous and at the same time not compl i-

• cated.

lv) Error bound s for approximate solution s are among the most im portant resul ts  that

the theory yields.  They depend , however , on s imple  properties which are independent  of

any h u b e r t  space s t r u ct u r e , and  therefore  can be obta ined  in the s imple  se t t ino  developed

-2-
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by Herrera. General results for such bounds are given in Section 3 of this paper; they in-

duce a metric in the space. By using these bound s it is possible to define weak or germ er-

ali zed solutions; however , these will not be discuss ed here. Certain error bounds for non-

• linea r problems have been described by Sewell and Noble [1976).

The application of the theory of functional-valued operators to partial differential

equatio ns requires one to express them in term s of such operators. This is achieved by

repeated use of integration by parts fo rmulae. Inthis  respect , the main advanta ge over

sta ndard formulations is derived from the fact that such manipulations can be carried out

more systematically; for exampl e, the operators involved always possess an adjoint .  A

discussion of the treatment of boundary conditions has already been given [Herrera , 1974;

• Herrera and Blelak , 1976 ); and in another way by Noble and Sewell [1972 et seq.]

Due to its generality , the usefulness of the concept of saddle functional is great.

In applications the flexibility of this concept is enhanced by the fact that its d e fi n i t io n

[Sewell 1969 , §2 (vii) ] depends essentially on the system of coordinates used. This is a

• fund amental difference with respect to the same concept when applied to surfaces;  the

saddle property of a surface is independe nt of the system of coordinates used.

In som e applicatio ns it may be diff icul t  to find a decom position of the space with re-

spect to which the functional is saddle. For linear problems [Herrera , 1974], th i s  amounts

to constructing a decomposition (D
+ , D )  of the space , such that the operator is non-

negative on D
+ 

and non-positive on D . However , the restrictio ns imposed by these

conditions are not too severe , because such a decomposition is not uni que , and in this  paper

a wide class of variational principles is given for which it is easily obtained.

For initial  value problem s only s tat ionary and not extremum principles had been ob-

tained , u ntil recently. However Herrera [1974] obtained dual  extremum principles for in -

• it ial value problem s that were later applied to a large class of problems by hi errera and

Bielak (1976]. Later Collins [1976) extended these resul ts  to a general kind of diss ipat ive

syst em by considering simultaneous ly the adj oint equation. In France , extremum pr incip les

for Initial value problem s corresponding to certain parabolic equations have just  been

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ • 
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obtained [Brez is and Ekeland , 197 ( 1; they Im pose more severe r e s t r i c t i ons  on the b o u n d a r y

conditions than those mentioned above .

The procedure used by Collins for dissipative system s (essentially ,  the mirror  method)

to generalize Herrera s princip les offers interesting possibili t ies, because th is  approach

is not limited to dissipative systems.  In this  paper a general procedure for deriv ing dual

extremum principles by the mirror method is developed; it Is applicable to any l inear  prob-

lem formulated in term s of a non-negative (or al ternat ively non-posi t ive)  func t iona l -va lued

operator. To i l lustrate the method , it is applied to the heat and the wave equations.  To

our knowledge, these are the first  extremum principles for the ini t ial  value problem associ-

ated with the wave equation,even though fur ther  work will be required to apply them . The

principles derived for the heat equation are di f ferent  from those avai lable  up to now and

impose less restrictive conditions on the test functions.

A brief description of the theory of func t iona l -va lued  operators is given in Section 2

and saddle operators are introduced there. Variational and extremurn pr inciples  for arbi-

trary saddle operators are given In Section 3 and in the next Section these resul t s  are used

to develop a general theory of non-negative unsymmetr ic  operators. Section 5 is devoted

to extending this theory to problem s defined in af f ine  subsp aces.  Some appl icat ion s of the

theory to part ial  d i f ferent ia l  equations are given in Section 6 . Only the heat and wave

• .
~~ equat ions are considered , but the applicat ion of the theory to other equat ions  can be made

I ~ in a s imilar  m a n n e r .
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2. SADDLE OPERATORS

The notion of saddle functional [Sewell , l9t ~9; Noble and Sewell , 1972 ] has been

used extensively in the formulat ion of dual extremum principles and Herrera [1974) has used

it to develop an approach adequate for the treatment of partial di f ferent ia l  equations

[Herrera and Bielak , 1974 , 197 6]. In this section a version of this  method which is suitable

for linear problems will be described .

Let D be any linear space , not necessar i ly  metric , or normed , or with an inner pro -

• duct , or com plete. The value of any real l inear  functional  f: D * R 1 at an element v E D

i s a  real number to be denoted by ( f , v)  . It is em phasized that this is not an inner

product , even though the same notation is often used for such [in particular by Noble and

Sewell , 197 2 ]. The linear space of all such funct ionals  will be denoted by

• Consider a linear operator P: D -. D* which is therefore a funct ional  -valued linear

operator. Thus , for each u E D th ere is an element Pu e D*, and the value of this func-

tional at any v c D is (P u , v>  . Given any such operator , the adj oint operator

* *P D * D , defined by the condition that

( P *u , v)  = (Pv , u)  (2. 1)

is satisfied Vu D and yv c D, always exists.  The operator P will be said to be sym-

metric , or sel f -adj o lnt , whenever P~ = P

Two subspaces D1 C D and D2 
C D are called a decomposition of D if D1 and

D2 are l inearly independent and D = D1 + D2 . In this  case , given any u e D there is

a unique couple (u 1, u 2) belonging to D1 and D2 
respectively , such that  u = u1 + u 2

the elements u1 and u 2 are called projections of u on D1 and D2 
. Projections of

linear functionals and functional-valued operators are defined similar l y.  Given f e D

and P: D — D*, the proj ectio ns f1 D* and f 2 c D* are such that

( f 1, u)  = ( f , u 1) ( f 2 , u)  = (f , u 2
) (2. Za)

for every u c D, while the projections P1: D — D* and P2: D -. D* satisfy the condi-

tions

• -5-
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P1u = (Pu )~, P2u = (Pu )1 
(2. Zb)

From these def in i t ions  It follows tha t

f = f 1 + f 2 
(2. 3a)

P = P 1 + P
~~

. (2 . 3b)

*
Defini t ion 2. 1. Let E C D be a subs pace of D . Then an operator P~ D * D j~

said to be non-negat ive on E j ..f

• (Pu , U)  > 0 for every u E ; (2. 4)

and positive on E if the equal i ty  sign in (2 . 4) holds only when u = 0 . When E = D the

specification ‘on E” will  be omit ted .

If P is non-negative on E the non-negat ive  square root of (P u , u)  will  be de-

noted by 11u II 
~
, 

whenever u e E . The set

N 1) = { U E  Ef II u II p = 0 )  (2 .5 )

may contain non-zero vectors. However, N 1) is always a l inear  subspace of E C D

Lemma 2 . 2 .  Let P be non-negat ive  on E . Then N 1) i s a  l inear  subspace of

•
1 E C D .

Proof. It is required to prove :

I) u E N 1) 
- au c N 1), V a E R

ii) U , V E  N 1) =~’ u + v c  N~~ .

Property I) is obvious because

( P(au), Qu) = a2 ( Pu , u)

• Property Ii) follows from . •

( P(u +v) , u + v) + ( P(u -v), u - v) = (Pu , u) + (Pv , v) (2.  6)

which can be obtained expandin g the left -hand member of this  equation. Recalling that

each of the term s involved in th i s  equat ion is non-nega t ive , the property is clear.

-6-
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1

Definition 2. 3. Let 1) :  D * D* be n o n - n eg a t i v e  on E . Then u , v D n i e  n~d l  to

be P-equivalent if and only if u -V £ N 1) . In th is  case one wr i t e s :
I
.

u~~~1) v . ( 2 . 7 )

In view of Lemma 2. 2 , this is an equivalence relation.

Non-positive and negative operators are defined by reversing the sense of the  in-

equality (2. 4). For this kind of operator there are definitions and results  corresponding to

those already given for non-negative and positive operators. It is worth noticin g th a t  the

relation becomes equality when P is either positive or negative on E

Definition 2 .4 .  Let D1, D2 be a decomposition of D and P: D -. D* be a self-

adjoint operator. Then , P is said to be saddle with respect to D1, D2 if P is non-

negative on D1 and non-posit ive on D2 . It is strictly saddle If P is p o s i t ive  on 1)
1

and negative on D2

It must  be observed that in this  definit ion the sub-spaces can not be in t e rcL- r~~

However , this manner  of introducing them simplifies many  of the propositions to be pr o -

• sented. For saddle operators the bilinear functional (Pu 1, v1) - (Pu 2, v2 ) is syznno ~~t i

and non-negative.  The non-negative square root of (Pu 1, u 1) - (Pu 2, u 2 ) wil l be do-

• I noted by hu ll 1); when P is strictly saddle lull1) Is positive and therefore l l u I l ~ is

norm . In th•i s case the bilinear functional  ( Pu 1, v1
) - ( Pu 2, v2 ) is an inner  p r o d u c t .

Definition 2. 5. Let P: D — D* be saddle with respect to the decom p osi t i on

D2 of D . 
~~~~~~~~~~ 

u , v E D are said to be P -equivalent  If and only if l l u - v I I~ = 0; in

this case one writes

u = 1) v . ( 2 . 8 )

For saddle operators the set

N 1) = {u E  DIhI u fI p = o)

is a subspace of D . Thus relation (2. 8) is an equivalence relation.

The foll owing lemma will be used in the construction of dual extremum principles.

-7-
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Lemma 2. 6. Let 1): D -. D* be sa dd l e  w i t h  r e spec t  to the  decom p osi t ion  D1, D2

Define the subspaces of D

D = ~U E  D 1 P 1
u = o} (2 .9 a )

= f U E  D I P 2 u =  o )  . (2 . 9b)

Then the operator P is non-posi t ive  in D and non-negat ive  in Db . Even more , If

u~ Da 

( P u, u)  = -II u tl~ . ( 2 . l o a )

I f u E D b
( Pu , u) = hIull~, (2 . l Ob)

Proof. Assume u c D , and let u 1 and u 2 be Its projections.  Then

(P u , u 1) = 0

and therefore

( P u 2, u 1) = ( P u , u 1) - ( P u 1, U
1
) = -( Pu1, u 1

)

Hence

( P u , u )  = ( P u , u 1) + ( P u 1, u
2 ) + ( P u 2 , u 2 )

= ( P u2, u 2 ) - ( Pu 1, u 1) = -hI u Il~~< O

The proof of the other part of the lemma is similar .

In some app l i cat i ons  It is re levant  to consider operators which are saddle on a sub-

space only.  Let E C D be a subspace , and E 1, F2 a decompo s ition of F; then P: D -~

is said to be saddle on F with respect to the decom position F1, E 2 , if P is non -nega t ive

on F1 and non-pos i t ive  on F2

St r i c t ly  saddle on F is defined correspondingly.

-8-
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3. VARIATIO NAL AN! ) EX TRt ~MU M PRIN CIPLES

In this  section a l inear  space ~ will  be considered whose elements wil l  be repre-

sented by ~ . Following Herrera [1974], the concept of derivat ive of a functional  will be

used in the sense of addit ive Gateaux var ia t ion.

Defini t ion 3.1. Let X :  -. be an arbit rary  func t iona l  and ~ E D . Then

X ’(~ ) E D* is said to be the derivative of X at ~ If

d a .s
X(u + kv) I~~0 = ( X ’ ( u ) , v )  (3. 1)

• for every y E  D

The partial derivatives can be defined in term s of the total  der ivat ive.

Def in i t ion  3. 2. Let , D~ be a decomposition of Ô Assume the der iva t ive  of

a 1 a a a *
• the functional X :  D - R exists  at u ~ D . Then the partial derivat ives X , 1

(u) E D and

X, 11
(u) D are def ined as the projection of X (u) ~ D , I. e. in term s of (2 . 2)

X, ~~ ) {X ( ~ ) }
~ 

and X, 11(u) = {x (~ ) 
~H 

(3. 2)

a a

Associated with a l inear  funct ional -valued operator P : D -. D and for a given

• A

f £ D , consider the equation

P u = f  . (3. 3)

\AThen is sel f-adjo int  it is possible to es tabl ish a var iat ional  principle.  To this  end ,

def ine the funct ional  X:  - P’ by i

a I ~~ ~ a
X(u) = ~~

- (Pu , u )  - ( f , u )  . ( 3 . 4 )

When X is given by (3. 4) ,  the der ivat ive X ’(~I) a lways exists  and is

• 

• 

X ’(~i) = - I . (3. 5)

In view of th is  equation , the following theorem is obvious.

• a a A *  A A

Theorem 3. 3. Let P: D -. D be s e l f - a d j o i n t .  Then u c D sa t is f ies  (3.  3) if and

only if

X’(u) = 0 . (3. 6)

-9-
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However , t h i s  is not an ox t r e r n u m  pr inc ip le .  When there  is a v a i l  ~tb le d rn 
~ 

I -

t io n  I) , D 11 
ef D sueh th ~ t P i s s i d I l e  w i th  re~~peet  to D1, fl u , it is p~~;s i N to

foi n~u l a t e  v ar i a t i o n a l  p r i n c i p l e s  t h a t  a re  d u a l a nd e x t r e mu r n . rollo wlng  Noble and Sowel l

[1972 , 1976 ) one considers  the equ at ions  obta ined by s e t t i n g  the p a r t i a l  d e r i v a t i v e s  of X

wit h iespec t  to 
~~ 

and D ir eq ual to zero. For the l i nea r  equa t Ion  (3.  3) , t h is l eads  to

• the system of equa t ions

• X~ = P1
u - = 0 (3. 7a)

X ,11(u) = P
11

u - 

~II 
= 0 . ( 3 . 7 b )

These equat ions , which are obviously e qu iva len t  to (3. 3), can also be derived from the

• l a t ter  equat ion by t ak ing  project ions on D1 
and

Theorem 3. 4. Let P: D -. ID* be sadd le with respect to che decom position D1, D
11

of . D e f i n e  the a f f i n e  subspaces

= {u DI u s a t i s f i e s  (3 7 a ) )  (3. 8a)

= {u ~ ( u s a t i s f i e s  ( 3 . 7 b ) } . (3. 8b)

ThOfl :

I) U E l~ sa t i s f i e s  (3 . 3) if and only if E P fl 
~ b

ii) For every E 1

~a ~~~ “b E

• A A a a 2
• 2 [X(u , )  - X(u )) = h U b - u U ~ > 0  . (3. 9)

i i i )  If the m ax ini urn of X on 7~ end the m i n i m u m  °~ ~ b coincide and are a t t a ine d

at U and U b 
respect ively ,  then

U 
~~~~~~ 

(3. 10)

iv) I f a  solut ion U E  I) of (3. 3) ex i s t s ,  then

a 2 a
Z (X(u b) - X (u )I = h U b 

- U 1 p + lu - u ll j~. > 0 . 
~~~ 

11)

1n th!s r~~ce th e  m a x i m u m  of X on p I s a t t a i n e d  at U if an d only If u U , an i  t he

- 10- 
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m i n i m u m  of X on is a t ta ined at if and only If U . In par t i cu la r  if I and

are two solutions of (3. 3), they are ?‘ -equivalent .

Proof. Property I) is obvious.

• It is instructive to prove part iv) before part i i) ,  because its proof is s i mp l e r .  I f

U E D satisf ies (3. 3), and U b E vb, then

• ZX(U) = ( PU , U > - 2 ( f , U )  = -(~uJ,ft )
2X(

~ b) = <
~~~b’ ’’b~ 

-

Thus

2[X(
~ b) - X(~~~) )  

~~~~~~~~~~~~~~ 
U

b

because P is symmetric. Now = ~~ ID~ (where Db is defi ned by an extension of

(2. 9b)), in view of the fact that I~ as well as U b 
satisfy (3. 7b): thus , appl ica t ion  of

Lemma 2. 5 (equation z. lob) leads to

2

21X(G b
) - X (U) J = IJU b - . ( 3 . 1 2 a ~

Similar ly
2

Z [X(O) - X(~~ ) } = J I G - U J I .~. > 0 . (3 .  lLb)

Adding these inequalit ies yields (3. 11).

• To prove property ii), let u E D and U b t Db : then

2X(u ) (
~~~a 2

~
’
~

t
~a ) = 2 ( P u  - 

~‘ ‘‘a~ 
- <

~~~a’ U >

= 2( I’G - t, G
11> - ( I’G , G >  = (

A
PGaII~ G 11> - ~~~~ G~ > - 2 < ~ ~aI1 >

= - G (I ~ - 2( Pub, G 11> z - u H - 2< I’GbI, U TI ) - 2 < 
~‘‘bII ’ ‘~aII > (3 .  1 3a)

where use has been made of the norm given before Definit ion 2. 5, and of equa t ions  (3 7)

and (3. 8). S imi la r ly

2X(
~ b) = hI U b hl~ - 2 < 

~~aI ’ U bI ) - 2 <  
~ ‘aIi ’ Ubi ) . (3. 1 Th)

— 11—
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Relation (3. 9) is obtained by subtrac t in g ( 3 . 13a) fro m (3 . l3b) .

Prope rt y iii) Is obviously implied by ii).

.1
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4. GENERAL THEORY or NON-NEGAT I VE UNSYMM E TRIC OPERATORS

Let P: D -. D* be a non-ne gative and not necessarily symmetric operator. As sume

f ,g ~ D* are given functionals , and consider the system of equations

Pu 1 = f ( 4 .l a )

P*u = g (4. ib)

where u 1, u 2 e D . This system of equations may be written in term s of a symmetric oper-

A A a 4 t  A

ator P: D — D where D = D G)D is the outer sum of D with itself , I . e. it is the space

whose elements G = (U1, U
2

) E Ô are ordered pairs of elements U 1, u 2 £ D . To express

equations (4. 1) in the fo rm
Aa a

Pu = f  ( 4 . 2 )

A A A * 
A A * 

A A A

let P : D - D  and f e D  be such that for everY U, V E  D

( I ’G,~~) = ( Pu1, v2 ) + ( P~
’u 2, v~) (4 . 3)

and

(i ,~ ) = ( f , v2 ) + (g , v1) . (4 .4 )

The operator 1’ is clearly sel f-adj o int  because

< ~‘G, ~) = ( P u 1, v2 > + ‘
~ ~

“l’ ~2 > (4. 5)

Due to this  fact It is possible to formulate variat ional  principles for the system (4. 1). The

procedure just  described is a rigorou s general izat ion of the mirror  method [Morse and

Feshbach , 1953].
a 1 ...

Theorem 4. 1. Let X, D-= R be given for every u e D by

X(G) = X(u 1, U
2

) = ( P u 1, U 2
) - ( f , u 2 ) - (g ,  U 1> . (4. 6)

Then equa t ions  (.1. 1) are s a t i s f i c i if and only if

X ’(u) = 0 . (4.7)

Proof. It fol lows from Theorem 3 . 3, bocou~ c

a ~~ a A

X (u) .j ( Pu , U) - ( f , u)  . (4. 8)

-13-
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The operator P does not have the property of being non-negative or non-positive

becau so

= 2(Pu 1, u 2
) . (4 .9)

In general when a se l f - a dj o i n t  operator which is func t iona l -va lued  and l inear is given , it

is possi b l e t o fi nd deco m posit i on s r3~ and of the space , such that  the operator is

saddle wi th  respect to them [Herrera and Bie lak , 1976]. Finding such decomposit ions may

be d i f f i c u l t  in some instances ;  however , for the operator here considered this  Is achieved

easily.

Lemma 4 . 2 .  Let e,~3, ’y, 6 be real numbers such that a6-~l ’y~~O, a~3 < 0 , and ~6 > 0 .

• Define

= I au 1 + ~u2 = o) (4. lOa)

= I yu 1 + 6u
2 

= 0 )  (4. lOb)

Then:

• I) The subspaces D1, D~ const i tute  a decomposition of D . The projecti ons

and G~ of any are

= X ( _ ~~yu
1 

- ~ 6u 2, a~yU
1 

+ aôu
2

) (4 . lla)

= X( aôu 1 + ~~~U2, - ayu 1 - ~‘yu2
) (4. lib)

where

X = . (4. 12)

ii) The op cr at or I~’ is saddle with respect to £~, 
~~ 

. Even more , If ~ is positive

4 then P is  s t r ic t ly  sa dd le .

lI i) Lr~ • .

= > 0, “2 = ‘~‘1’~ 
> 0 (4. l3a)

m 1 
= 

1 
1 ~~~ m 2 1 

(4. 13b)

- 14-
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• Then

IIG II~~= m 1IIu1II~~+ m 2 IIu2 II2
~ . 

(4.14)

Th us, the re lation G 
~~~ 

holds , If and only if the relations u1 ~~~~~ 

v1 and u 2 ~~~v2

are satisfied simultaneously .

iv) Each of the equations (3.  7a ) and (3.  7b) Is equivalent to

*aP - ~ P U
2 

ef - ~g (4 .15a )

- 6P *u2 = yf - 6g (4. l 5b)

respectively.

• \ I A
U

U2
A

A U D11111 
I

~rIc :~.

A
Fig.l Decomposition of ~ to ma~ce P a saddle operator .

Proof. The decomp osition of D is shown schematically in Figure 1. The defini t ions

(4. 10) of and Im ply that these two sets are subspaces of To prove that they

constitute a decomp osition of D, it Is only necessary to show that u1 
and u 11 

as given

by (4. 11) have the following properties: a) £ and e 
~ II~ 

b) G = + G11
; C) this

-15- 
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Is the only couple of elements of that  has properties a) and b) . The proof of a), b)

and C) Is straightforward .

In view of (4 .9 )  and (4. lOa) , for every € one has

~~~~~~ 2 2
-a~ (Pu , u)  a (Pu 1, u

1) + ~ ( Pu 2, u 2 ) > 0

Similarly, for every G €

a a a  2 2
y 6(Pu , u) = -y ( Pu1, u 1) - 6 ( Pu 2, U

2
) < 0

From this property ii) follows easily.

Property iii) is obtained by direct computations.

The definition of projections implies that equation (3.7a)  is satisfied if and only if

(P u - f , v) = 0  (4.16)

for every € . Using equations (4. 3), ( 4 .4 )  and (4. loa) ,  it is seen that (4.16) is

equivalent to

-a(Pu 1 - f , v
1> + ~ (P *u

2 
- g, v1) = 0 (4 . 17)

for every v1 € D . Hence (4. l5a). The proof of (4. l5b) is similar.

In view of this lemma , Theorem 3. 4 can be applied to this case.

Theorem 4. 3. Let X:  D — R be given by (4. 6), a 6 - * 0 , a~ < 0 and ‘yô > 0

Define the af f ine  subspaces:

= G sat isf ies  (4 . 15a) )  ( 4 . l B a )

= {~i € ~J G sat isf ies  (4. 15b) ) . (4. 18b)

Then:

I) G = (u 1, u 2
) e is a solut ion of equat ions  (4. 1) If and only If G € p f~ D b

ii) For every = (U 1, U az ) e Da and every Gb (u bi, u bZ ) € 

~ b

2[X(
~ b) - X(~i ) ]  = m 1JJ u  - u bl IJ~~ 

+ m z JI u 
~ 

- U b2 Jl~~ 
> 0 .  (4 . 19)

iii) If the max imum of X on and the m i n i m u m  on 0b 
coincide and are a t ta ined  at

u and G b respect ively

-16 -
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U l ~ ~
, Ubi 

(4. 20a)

and simultaneousl y

U
aZ~~ P U

bZ 
(4.20b)

iv) If a solution = (U 1, U 2 ) € ~ of (4. 1) exists , then

2[X(Gb) - X(G )] = ml{ f l U bl - U j IIp + 11U 1 
- u1II~

}

• 

.

1 

+ m Z {(J ubZ - U Z Jf p + 1I U~~ - u2 lI~ ) (4 . 21)

for every G €  ‘~a ~~~ “b e Db .

Proof. Using Lemma 4. 2 , the proof of this theore m is a straightfo rward application

of Theorem 3 .4 .

-17 -
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5. EXTENSION TO PROBLEMS DEFIN E D IN AN A F F IN E SUBSP A CE

• In many  appl icat ions to part ial  d i f fe ren t ia l  equat ions , the operator involved may be

saddle or non-negat ive when at tent ion is restricted to funct ions  sa t i s fy ing  cer ta in  boundary

cbnditions. In such problem s the admissible  funct ions  usua l ly  const i tute  an a f f tne  sub-

space and the theory would be unduly  restricted if such cases were not included .

A set C is said to be an af f ine  subspace if there is a subspace ~ C ~ and an

element ~~i such that ~ = + . Clearly , ~ = when ~ E, so that  a l inear

subspace Is always an af f ine  subspace.

Given a functional X: D -~ 81
, for each G € ~ the variation of X at is a linear

functional 6X( G) E ~~ such that

( 6X(G) , 
~

) = (X (G), G> (5. 1)

for every . When a decomposition 
~~~~
, 

~~ 
of is available , at every £ the

A a*partial var ia t i ons  6iX(u) c E (I = I, II) are defined in a manner  similar to partial deriva-

tives [Herrera and Bielak , 1974].
A

Variat ional  principles which hold when the set of admiss ible  functions is D i tself ,

but which remain valid when the set of admissible functions is restricted to be an af f ine

subspace ~ C i$, are known in m a n y  instances.  The validity of such a procedure fre-

quently depend s on the following property of the a f f ine  subspace [Herrera and Bielak ,

1976].

Def in i t ion  5. 1. Let ~ : ~ -. and be given. An a f f ine  subspace ~ = + t
is said to be dete rmina t ive  for problem (1. 2) if it possesses the following property :

Whenever ~ e ~~~, the f:ct tha t  
...

(Pu - f , v) = 0 for every v E ( 5 .2 )

4 
implies  ( 4 . 2 ) .

• Lemma 5. 2. Let ‘
~~: i$ — ~~~~~ be s e l f - a d j o i n t ,  X(u) be given by ( 3 . 4 )  and ~ . C

• be an a f f i n e  subspacc de t e rmina t ive  for problem (3.  3). Then G ~ sa t i s f i e s  (3. 3) If  and

only if

-18-
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I

6 X ( G ) = O  . (5. 3)

If in addition 
~ 

is a decompositio~~of £ , then (5. 3) can be repl aced by :

6
1X(G) = 0 (5 . 4 a )

611X(u) = 0

Proof. Equation (5. 3) means
AA A P. A a

( Pu — f , v) = ( X ( u ) ,  v ) = 0 (5. 5)

whenever € ~~~ . By the definition of determinative aff ine subs pace the first  part of the

lemma follows. The other part is obviou s.

The following result can now be easily derived from Theorem 3 .4.

Theorem 5. 3. Assum e = + is an affine  subspace , de terminat ive  for problem

-
• (3. 3). Assume in addition that  ~: £~ — is saddle on ~ with respect to the decom po-

• sition 
~~ 

. The properties i) to iv) of Theorem 3.4 remain valid when the se ts

(equations 3. 8) are replaced respectively by:

aa = ~G €  ~ I G satisfies ( 5 .4a ) } ( 5 . 6a )

eb = £ ~ I G satisfies (5 .4b) ) . (5. 6b)

Proof. Under the assumptions of the theorem and writing G = + , problem (3.  3)

is equivalent to
— aA

Pv = f - Pw (5. 7)

where ~ € ~~, while ~~: ~~ -‘ ~~ ‘~‘ and f e  are the restrictions of ~ and £ to . The

theorem follow s now by application of Theorem 3. 4 to equation (5. 7), af ter  observing that

J A a — A A A A A A 1 ~~ a
.
~~
. ( Pv, v) - ( f - Pw, v) = X(u) + ( f, w) - ( Pw, w) . (5. 8)

That Is , the fu nctional X(u) d i f fers  from the functional associated with the problem (5 . 7)

formulated on ~ by a constant term only.

Theorem 5. 4. Assume P : D — D* is non-negat ive on the subspace E C D . Let

= w 1 
+ E and = w2 + E, with w1, w2 € D, be two aff ine  subspaces of D such

-19-
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that they are de te rmin at ive  for problem s (4. Ia)  and (4.  Ib) respe ct ively .  Define the a f f i n e

subspace~~~~C D b y ~~~~= e 1 a~e 2 = w + E , where , = w 1 tI) w2 = ( w 1, w2 ), and E r E P E .

Let

• ~‘ a {G € ~ I G satisfies (5 .4a) )  (5 9a)

eb = {G€ ~ I G satisfies (5. 4b) ) (5 . 9b)

Then Theorem 4 . 3  remains  tru e if the sets 
~~a ~~~ 

are replaced by sets L a ~~~

respectively.

Proof. This follows from Theorem 5. 3, observing that the af f ine  subspace is de-

terminative for problem 4 . 2 , while 1’ is saddle on = E G E  with respect to the decom-

-• 
position E V E11 

of . Here

= = (v 1, v2) e av 1 + ~3v 2 = 0)  (5.  iOa)

and

~1I = = (v 1, v2 ) e E~ yv1 + by
2 

= 0) . (5. lOb)

‘I
I
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6. APPLICATIONS

In the applications to be considered , G will  be a region in n-dimensional  ouclidean

space , with closure G and boundary S = S
1 

U S2 , where S1 and S2 
are d is jo in t .  The

linear space D of funct ions wil l  be assumed to be such that the d i f fe ren t i a l  operators and

integrals are well defined (possibly in a generalized sense). Such would be the case if

the functions are C2 on G X[0 , T]; this is however , unnecessari ly restr ict ive.

A. The heat equation

For every u , v € D, the operator P: D — D* will be defined by:

(Pu , v) f
T

{f
~~~v (~ u a u )d + f  ~~~~~-!~ d x +

+ . 
dx )dt + 

~~~~~~ ~~~~~ 
dx . (6. 1)

Using integration by parts , a convenient expression for the adjo int  operator is obtained:

( P *u, v) = 

~ ~~~~~~ + )dX - 

S1 

~! dx -

- dx )dt + ~~ [~~~ ~~~ ‘t=T 
dx . (6. 2)

Therefore:

= 

~ 
(~~ -)

2 dx dt 
~~~~ 

+

+ Ej~ ~~i
1t T

~~~ 
= I I u l l~ . j

Assum e 
~G’ 1sl 

and f~~ are continuous funct ions  defined on G X [O , TI, S1 X [0 , T]

and S2 X[ 0 , T] respectively , and let f 0 be C1 on G . Define f € D*, for every v e D,

by:

• -2 1-

L. . - 
. • :



( I , v) = ~~~~~~ 
1G ~~~~-. dx + .ç ~51 

dx + dx )dt

+ f i ~ —° 
~~~~~~~ 

. ( 6 . 4 )

Let g~~, 
~~~ ~~~ 

and be another set of funct ions  s a t i s f y i n g  the same hypotheses  and

def ine  g D* by:

(g , v) = f

T

{f  ~~~~~ 
dx - f q 31 ~~ dx - f g 52 ~f 

dx )dt
O G  S1 

S2

+ 11 ~~• I f~~~d~ . (6 .5)

Application of the so-called fundamen ta l  lemma of the ca lculus  of v ar i a t ions ’ shows

that for funct ions u 1 € D, the equat ion

Pu 1 = f  (6 . 6 )

is equivalent  to the system :

- 

~~~~~~ 
1
G ~n G XjO , T] (6 . 7a )

au
= 

~Sl on S1 X[ O , T] (6 . 7b)

= f~ 2 on S2 X[O , T) (6 . 7c)
Bn

af
on G at t = 0 . (6. 7d)

Similar ly , for funct ions u 2 D, the equat ion

• P*u _ g  (6. 8)

is equiva len t  to the problem

-22-
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28u 8 u

~ Ox~Bx~ 
= g~ on G X[0 , T) (6. 9a)

—

~~~~~ 

= g51 on S1 X[0 , T] (6. 9b)

= 

~S2 
en S2 X[0, TI ( 6 . 9 C )

8u 2 
8
~ T —

• = -b-—— on G at t = T . (6. 9d)

A more standard form of these problems for the heat equation is obtained by r~~ l a c i n g

equations (6. 7d) and (6. 9d) by

u 1 = f 0 
on G at t = 0 (6. 10)

and

u 2 = ~~ on G at t = T (6. 11)

• respectively. When these equations hold , the corresponding problem s will  be called

initial and terminal value problem s respectively. Observe that a solution of problem (6. 7)

or (6. 9) may di f fer  from those of the latter by at most a constant .

A a A

The space D and the operator P : D —= ID is defined as in Section 4. The func t iona l

X given by equation (4. 6) is:

T Bu Du 82u

• X(u 1, u2
) f 0 ~~ 

- ax 1ax
~ 

- 

~~~ 
- ~ G

+ f F ( 1 
- 

~~~~~~ 
- g . ldx + f L (• -

~i~:~ 
- -

8g 8u1
- [~~ 8x

1 ’t= T 
)dx . 

(6. 12)

Thus:

-23-
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Theorem 6. I. The f u n c t i o n s  u 1, u 2 
1) a re so lu t ions  of proble m s (6.  7) an d ((~. 9)

i f and only  i f

X ( u
1, 

u 2 ) = 0

There are several a l t e rna t i ve  ways  of s t a t i ng  the dua l  ex t r emum pr inc ip les  derived

from Theorem 4. 3. One tha t  we have  found convenien t  is the fol lowing:

Theorem 6. 2. For every v D , d e f i n e :

1 ’  t 2
Ual

(X
~ 

t) = f 0(x) + ~~~
— {v(x , t) - v(x , 0) + J ~~~~~ 

+ af
G 

- 3~~~)dt ) (6. 1 3a)

t) = ~~(v - au 1 ) . (6. 13b)

Let the set of functions A C D be such t h a t  v A im p l ies u 1 
€ ID a nd in addIt ior ~

~~~~~ ~~~~~ 
t)dt  = v(T) + v( 0)  - 2a f 0 + + f ( P ~~ - ~~G

)d t;  x e (6. l4a)

= pg~~ on S1 X [0 , T] ( 6 . l 4 b )

= af ~ 2 + pg 52 
on S2 X [O , T] . (6. 14c)

Assume the f u n c t i o n a l  c~~: A p 1 is gi v i n  by :

T au [au au 1 af 8f

• 

~~~ 

~~~ dx + 1Sl ~~ dx + 

~~~ 

dx )dt

+ 

~~~~~~~~~~~~~~ 

d x . (6. 15)

The d e f i n i t i o n s  of U bl~ 
U

b2~ 
B C D ~n 1  12.~

: B - P
1

, are o b t a in e d  r e p l a c i ng a by

y and ~ by 6 i n the above d e f i n i t i ’~r n .

Let v £ A and w B . V r ~t u u !• r t b  • f t m n c t !  :~s a ssoci ~t e i  w it h  v by— — a l aZ —
~~~~~

—-—
~~~~~~~~~~ 

__________________ —

e q uat I o n s  (6 . 13) U bl~ 
U h Z  for t h e  fun t i~~~~ a s i t H ~~~i t h  w by the mod i f i ed  ~cr -

sio n of those  e qu a t i n n .~~ Th en:
____________________ - - 2 4 -

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
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I) u u and s imu l t aneous ly  u u , if and only if u , u are solutions
al bl a2 b2 al a2

respectively of the initi a l and termin a l  value problems for the heat equation.

ii)

2[il b
(w) - 

~a~”~
1 = m 1 Ij u 1 

_ u
bl IJ~ + m

2 I l u  2 
- U

bZ II~ 
> 0 (6 . 16)

where II ~ is gi ven by (6. 3).

Assume the maximum of f? and the m i n i m u m  of i~ coincide and are at ta ined at v
a b

and w respectively. Then

U
1 

C U
bl 

and u a2 
C U bz 

(6. 17)

Thus 2 they are solutions of the ini t ial  and te rmina l  value problems for the heat equat ion.

If solutions U 1, U 2 
e D of the ini t ial  and te rminal  value problem s respectively ex-

1st, then

- 

~~~~~~~~~ 
= m 1 {I l u bl ~U 1 Il~ 

+ lu 1 -u 1Il~~)

- u 2 Il~~+ 1Iu 2 - U 2 II~~}>  0 . (6.18)

Proof. To apply Theorem 4. 3, observe that  In view of equations (6. 1), (6. 2) , (6 .4 )

and (6. 5), equation (4. l5a) is equivalent  to:

2 2a u
a —

~~~~ - (3 — - a ax 1a~1 
- 

~ ax 1
ax

1 
= af G 

- on ~ X[0, T] (6. l9a)

8u au
a -

~~ -+ l3 —
~-j~

- = af 81 + (3g 51 on S1X[O , T] (6. 19b)

• 8u Bu
a-~~~--+ ~3-5~- = af 52 + (3g 52 

on S2X[O , T] (6. 19c)

8u 1 af 0 —

= ~~~~
— on G at t = 0 (6. l9d)

8u 8g
= on G at t = T . (6. l9e)

ax 1 
Ox .

0

-2~~-
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Let v € A ; then  a s t ra igh t forward  com puta t ion  shows that  U aI )  U 2 £ ID as given by (6 . 1 ~)

sa t i s fy  equat ions  (6. l~) i - d ) .  On the other  hand , equat ion  (6. 19e) I s  also sa t i s f ied  by

U 2, by v i r tue  of (6. l4a) .

In a s imi lar  fash ion , it is shown that  given w e  B, U bl 
and U bz 

sat isfy  equat ions

(4. lsb) . Asser t ion i) follows from Theorem 4. 3 and the fact that  the u functions sat isf y

equat ions  (6 . 10) and (6 . 11).

When equat ion  (4. l5a) is satisfied the functional  X , given by (4. 6), becomes

• X(u 1, u 2) = ( Pu 1, u 1
) - ~~

- ( f , au 1 + (3u 2
) . (6. 20a)

Similarly,  when equation (4. lsb) is satisfied

• X(u 1, u 2 ) = ~ ( Pu1, u 1) - 
~~

- (  f , 6u 1 +yu 2 ) . (6.20b)

• In view of these fac ts  and property i) , Theorem 4. 3 yie lds  the rest  of the theorem .

Dual va r ia t iona l  principles for d i f fus ion  equa t ions  were f i rs t  obtained by Herrera

[1974 , Herrera and Bie iak 1976]. Later Coll ins  (1976 ] extended Herrera ’ s results  to a more

- ‘ general  c l a ss  of d i ss ipa t ive  systems.  Independently Brezis and Ek el and [1976] have oh-

• t a m ed such p r inc i p les  for a class  of parabolic equat ions .  For the heat  e q u a t i o n , Theorem

6. 2 represents  a def in i te  improvement  over previous resul ts  because these requ i r e  solving

Laplace s equat ion at every t ime t . Brezis and Ekel and s [1976) principle s are In addit ion

res t r ic ted to the case where S2 Is void and u vanishes  identical ly on S .

• Dual  var ia t iona l  principles for the heat equat ion  that  have been derived in the past

[Herrera , 1974 ; Herrera  and Bie lak , 1976 ; Coll ins , 1976 ; Brezis and Ekeland , 1976) can also

be obtained us ing  the  general theory  presented here. For this  purpose , the operator

*P: D — D m ay  be de f ined  by :

= 

~~~~~~ 
v(~~~ - )dx + f u ~~~ dx - f v ~~~ dx )dt + f vu~ dx (6. 2 1)

which is po si t ive on the l inear  subspace of funct ions with vanishing normal derivat ive s on
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S2 
. The extension of the theory to problems formulated in affine subspaces , developed in

Sectio n 5, can then be applied to this operator to obtain those r esul ts .  However , the de-

tails will not be carried out here.

B. The wave eouation

For every u , v € D, the operator P: ID — D will be defined by:

(P u , v) = 

~: 
~~~~~~~ - ax~:~ 1 

)d x + 
‘
~l ~~ 

d~ + d~ )dt

+ ~~~~ + :~
•
~ 

.~~!-] dx . ( 6 . 2 2)

Integration by part s shows that

< ~*%~~~y) = 

~~~ 
(4 - ax~:~~ 

)d X + L ~~~~~~ ~!dx + 
~~~~~~ ~~~~

- - dx )dt

• &u Bv 3u 8v
~~~~~~~~~~~~~~~~~~~~~ 

. ( 6 . 2 3 )

The operator P is non-negative because

(Pu , u) = IJ u II~ = ~~ f {[ ( ~~ ) 2 
+ ~!! ~~~~ + [(~~ -)

2 
+ 

~~

-

~~

- 

~~~~~ )d~ ( 6 . 2 4 )

In addition to the functions f and g introduced in subsection A, let f
~ 

and be

:- continuous functions defined on G . Define f c D* for every v € ID by:

( f , v) = f:{~~
f
G~~~

dX + ~~~ dx + 
2

f 52 ~~~dx ) d t  + Qf t ~~ 
+

+ — ~ 
.
~~~

- ]  dx (6 .2 5 )
8x

1 
8x 1 t=0 —

*and g e D  by
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(g , v) = -f (f 
~~~ d x + f g 51 ~~ d x + f g 52 ~~~dx )dt + f [g 1 ~~~

(6. 26)

Then , applying the fundamental  lemma of the calculus of variat ions , It is seen that  the

equation
Pu1 = f ( 6 .27 )

for u 1 € D is equivalent to the problem:

2 2
- .

~ 
-:;; i- 

- a:i
:
~ i 

= 
~G 

on G X[0 , T] (6. 28 a)

au
= 

~S1 
on S1 X[O , T) (6. 28b)

- . Ou -

= on S2 X[0 , T} (6. 28c)

Ou
= on G and t = 0 (6. 28d)

8u 1 8f 
—

= —p- on G and t = 0 . (6. 28e)
8x~ ax

~
Similarly, the equation

P*u = g (6. 29)

is equivalent  to the problem:

2 28 u 2 
a~~2 —

- 

~~~~~~~~~~~~ 

= g~~ 
on G X [0, TJ (6. 30a)

= g
81 

on S1 X [0 , T] (6. 30b)

8u
• = g

52 on S2 X(0 , TJ (6. 30r)

- 2 8-
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= on ~ and t T (6. 30d)

= -~~~~ - on G and t = T . 
(6. 30e)

As in the case of the heat equation , the initial and terminal value problem s are defined re-

placing (6. 28e) and (6. 30e) by equations (6. 10) and (6. 11) respectively; the observation

made there about the relation between their solutions also applies here .

A A A

The space D and the operator P: D -. ID will now be defined as in Section 4. The

fu nctional X given by equation (4 . 6) is

X(u 1, u 2)
2 2

T 8u a u  a u  au
= f {f ~~~~~ - 

~~~&x - 1
G~ 

+ ~~~ —~~-] dx +

• + f [ (
l 

- + g
51 ~~~ 

]dx

+ I afl - 
~~~~ 

~~~~~~~. + g52 
)dt

+ j (  ( 1 
- 

~~~~ 

+ (.
~~
_

~
— - ~5~ -) 

~~~ 
1t:: ~ 

dx

Bu 8g au
,- ~~ + ax 1t=T 

dx . 
(6. 31)

Theorem 4.1 yields a variational principle for the problem of the wave equation considered

here.

Theorem 6. 3. The functions u1, U 2 
£ D are solutions of problems (6. 27) and (6. 29)

simultaneou sly If and only if X ( u )  C X ’(u 1, U
2

) = 0

- 

Assume a, (3, y, 6 are real numbers sat isfying the hypotheses of Lemma 4. 2 , and

define and by (4. 10). Let

-2 9-
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a’ = 6/A ; (3’ -(3/A (6. 32a)

and

-y/A; 6’ = a/A (6. 32b)

where

A a 6 - ( 3 y  . (6. 32c)

Given any w1, w
2 € D, define

U 1 
= a w 1 + ( 3 w2 (6. 33a)

u2 = • y w
1 

+ 6 w 2 . (6. 33b)

Then these equations define a one to one mapping of l~ into itself whose inverse is

w1 = au 1 + (3u 2 
( 6. 34a)

= yu 1 + 6u 2 . (6. 34b)

Lemma 6 . 4 .  Let w1, w2 £ ID, and let u 1, u 2 be given by (6. 33). Assume w 1 
and

• w2 are such that

au 1
-: —

~~~~

— = ft ’ u1 = f~ on G at t = 0 , (6. 35a)

au
—

~~~~~ 

= ~~~‘ 
U

2 
= g~ on C at t = T . (6 . 35b)

Then u 1 and u 2 sa t i s fy  equation (4. l5a) if and only if:

2 2

- _ _=  af
G +

= a!51 + ( 6. 36a)

•

— 

. •
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and equatio ns (4. lSb) if and only if:

2 28 w 2 
8 w 2

- 8x~8x
1 

= +

8w

~ si + 6g 51 
(6. 36b)

8w2
= ~f~2 + o ~52 ,

all on the correspondin g domains.  
-

Proof. By direct com putation , using the definit ions of P, f and g, it is seen that

the assertion is true for functions satisfying equations (6. 28d , e) and (6. 30d , e) . The

lemma follows from the fact that this set of equations is satisfied whenever equations

(6. 35) hold.

Theorem 6. 5. Let ii: -. R be defined for every w = (w1, w2) £ ~~~ by

= f2( w1, w2) = X(u 1, u2) ( 6. 37)

where u1, u 2 € D are given by (6. 33). Assume 
~~~~~ 

(w 1, W 2) ~) 
~~~ ~

vb (w bl, wbz ) € D

satisfy (6. 35). In addition, it will be assumed that  
~~ 

satisfies (6. 36a), while

satisfies (6. 36b). Then:

i) u 1 and u2 
satisfy the initial and terminal value problem s resp ect ively,  if 894

only If w1 
and w2 satisfy equations (6. 36).

ii) 8(u -u ) 8(u -u ) a(u -u )
2 {c2(

~
t
b) 

~~~~~~~~ 
= m 1 

f [ (  al bl 1
Z 

+ 
al bl bl 

t=T 
dx

+ m 2 
jg 

8 8
ti~ 2~~2 

+ ~~~~ bZ a

X

bZ 
~~~~~~~ 

d~ > 0 . (6. 38)

= 
~

‘b~ 
( 6. 39)

if and only if
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Bu 8u bu au —al bi al bI G t t - T
= 

~~~~~~~~~~~ 

...

~~~~~ 

.-~~~~~~ — on a - (6. 4 Oa)

and simultaneously

8u 8u Ou au 
—

= ...
~~~~~ ~~~~~ 

= —~~~~ on G at t = 0 . ‘6 4 Ohat 8t ‘ ax1 ax1

iv) If solutions U1, U 2 
€ D of the in i t ia l  and t e rmina l  value problem s respect ively,

exist,  then

a(u - U )  a(u - U )  8(u - U )  a(u - U )
- .v ) )  = m 1 .Q( 8 I 1 ) 2

÷( bi 1 ) 2~ a~1 
1 

_________

8(u bl
_U

l) a( ubl
_U

l
) a( u az

_ u
z ) z 8(u bz

_ U
Z ) 2

+ 8x 1 
ax~ 

1t=T 
dx + m 2 

f [ (  
~ 

+ (  at

8(u a2
_U

2) a( u 2 -U 2 ) a( u bZ
_ U

Z ) O( u bz
_ U

z )
+ +—  ] dx . (6 .4 1)

8x 1 ax 1 
ax

~ 
ax

1 t= o —

Proof. This theorem Is a straightforward application of Theorem 4. 3.

Many extremum principles can be derived as corollaries of Theorem 6. 5. In m a ny

applications interest is centere d In the ini t ia l  value problem . In this case one can profit

from the arbitrariness of g . We do not intend to be exhaust ive in this respect. However ,

the following theorem is given as an example.

Theorem 6. 6. Define the func t iona l  i T :  D — 8 for every p e D, by:

( )  f [ ( aP ) 2 
+ 

~~~~~~~ ~~~~~~~~~~ 
- 2 {f (f  

~G ~fdx  + f f 51 ~~- d x  + J f 52 ~~~d x )dt

+ + 
~~~~ ~~-J~ = ~~ 

d~ ) . (6. 42)

Define D C D by the conditio n p € D if and only if
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2 2
= 0 on G X[0 , T] , (6. 4 3a)

X Xi

= 0 on S1 X[0, T] , (6. 43b)

= 0 on S2 X[o , T] . (6 .43c)

Assume a solution e D of the initial value problem for the wave equation exists. Then:

I) For each p e D

ir (p) > lr(p
M

) . (6. 44)

ii) In addition the equality sign hold s at some p e  D if and only if

~~~ (x , t) = .!~i (x t) ~~~~
-(

~~ ,T) = -_
a

M
~(x ,T) . (6 .45)

Proof. Choose the functions g so that the right hand members in (6. 36a) vanish ,

while a g~, a 0 . For functions £ D satisfying equations (6. 35) and (6. 36a):

= ( P u 1, u 2 ) - ( g , u 1) - ( f , u 2 ) = ~~ (Pu1, u~) - ~~~ ( f , w~)

- - because in this case equation (4. 15a) is satisfied.

At the same time (6 . 35b) implies

u = — w at t = T . (6. 47)l a l

Using the Initial  conditions (6. 35a) gives

£~~) =fr f  {f~ ~~~~ .__~~ ~~[(~~~) 2 
~~~~~ 

~t =T~~~~
- (6 .48)

- {.~j~t ~f 
+ i5~~ ~~~~~~ 

d~ + f
~i~~G ~~ dz c +

.ç1
fs1 ~~~~ + J ~2

f
52 ~~~~d~~)dt  )

where ap stand s for w1 . Multiply by 2(3/a and elim inate an irrelevant constant to ob-

tain the functional 1T(p) given by (6. 42).
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